WSEAS TRANSACTIONS on MATHEMATICS

Xia Ye, Huashui Zhan

The Existence of Solution for the Nonstationary Two Dimensional
Microflow Boundary Layer System

XIA YE
Jimei University
School of Sciences
Xiamen, 361021
China
yel249@126.com

HUASHUI ZHAN
Xiamen University of Technology
School of Applied Mathematics
Xiamen, 361024
China
2012111007 @ xmut.edu.cn

Abstract: The paper concerns with the nonstationary two dimensional microflow boundary layer system. By
posing some restrictions on the viscous function, the existence and the uniqueness of local solutions to the system
are got. The main technique we used in the paper is Oleinik line method based on a successive approximation,
which is used in the study of Prandtl system. However, the corresponding calculations in our paper are much more

complicated.
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1 Introduction

As we known, the Prandtl system is a simplification
of the Navier-Stokes system and describes the motion
of a fluid with small viscosity about a solid body in
a thin layer which is formed near its surface owing to
the adhesion of the viscous fluid to the solid surface.
Assume that the motion of a fluid occupying a two di-
mensional region is characterized by the velocity vec-
tor V. = (u,v), where u,v are the projections of V'
onto the coordinate axes x, y, respectively, the Prandtl
system for a non-stationary boundary layer arising in
an axially symmetric incompressible flow past a solid
body has the form

Ut + Uy + VUy = Viyy — Pz,

Uy + vy = 0,
u(O, £, y) = uo(x, y)v u(ta an) = ul(t,y),
u(t,z,0) =0, ov(t,x,0) = vy(t,x),

limy oo u(t, z,y) = U(t, x).

inadomain D ={0<t<T,0<zx<X,0<y<
oo}, where v = const > 0 is the viscosity coefficient
of the incompressible fluid. U; + UU, = —p4(t, ),
U(t,z) > 0, up > 0,u; > 0 fory > 0, ugy >
0,u1y > 0fory > 0. U = U(t, z) is the velocity at
the outer edge of the boundary layer, p = p(t, ) is
the pressure. The density of the fluid p is equal to 1.
Prandtl boundary theory does not consider both the in-
fluence of wall’s properties on the characteristic of the
boundary layer and the interaction of the actual solid
wall with the flow of water. If one considers these in-
fluences, the Prandtl system should be modified to the
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following system

Ut + Uty + VUy = (V(y)uy)y — Pz, )
Uz + vy = 0,
with the conditions
u(0,z,y) = uo(z,y), u(t,0,y)=wui(ty),
U(t,.%‘,()) :g(t,x), U(t,x,O) :UO(t7$)a
()
lim u(t,z,y) = U(t,x). 3)

Y—00

where ¢, z,y € D, v(y) is a boundary function, v and
g(t, x) satisfies some other restrictions.

In recent decades, many scholars have been car-
rying out research in two dimensional boundary layer,
achievements are abundant in literature on theoreti-
cal, numerical experimental aspects of the theory!2!.
In particular, Oleinik had got the existence and the
uniqueness of solutions for the Prandtl system by two
different kinds of line methods, one of them is based
on Rothe’s method[?’], another one is based on a suc-
cessive approximation[?’}. If v is a sufficiently large
positive function, which means that v(y) > vy > 0,
1g is a constant, the system (1)-(3) is called the mi-
croflow boundary layer!), and Li-Zhan [5] had got
the local well posedness of the system by a similar
method as [3], which is base on Rothe’s method. Also,
there are many papers to deal with the other related
problems in the boundary layer theory, such as the
relation between the Navier-Stockes system and the
Prandtl system and the long-time behavior of the so-
lutions(see [6-15] and references therein).
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In this paper, we used Oleinik’s successive ap-
proximation method to study the problem (1)-(3).

We use the following change of variables [3],
which is known as Crocco transform,

T = ta 5 =, nN= U(t,l‘,y), w(ﬂfﬂ?) = Uy. (4)
By calculatlon we can get uy = w, Uyy = wyw,
Uyyy = wm]w + w W, Uyt = wnut + Wr, Uy =

WpUy + We, Vy = VoW, Vyy = l/m]'w + vhwpw.
From Egs.(1)-(3) we obtain the following equa-
tion for w

L(w) = uwm,w2 — Wy — NW¢ + prwy + Vnnw3

&)

in the domain (2 {0 <7 <T0 < ¢ <
X,g(1,&) <n < U(r,§)}, with the conditions

+21/nw77w2 =0,

w |T=0: w0(£7 n)a w ‘5:0: U)1(7', 77)7 (6)
w ’77=U(T,§): 07
l(w) = (vyw?* + vwyw — py — vow — gr—
—99¢) In=g(re)= 0, (7)

where v(y), ¢(t, ) turn into the corresponding func-
tions of 7, £ and 7, but we still denoted them by
v(r,&m), 9(7,).

Clearly, if v ¢, i.e. in the Prandtl boundary
system, then (5) has the following simpler form

annwz — wr — NWg + prwy = 0.

Now, due to the nonlinear terms VnnU’S + 2Vnwnw2,
the problem becomes more difficult. In order to get
the similar results as those of Prandtl boundary layer,
some restrictions in v, g have to be added. 0 <
vy < v(y) < vi, where v;, (i = 0,1), are con-
stants. Uy, Uy, G7, g, Vpny and ge all are bounded,
Upp < 0,1, < 0 and g(7,§) < min %, where
U(,€) is the press function of the flow outside the
boundary layer.

2 Some important lemmas

Definition 1 A function w(7, &, n) is said to be a weak
solution of problem (5)-(7), if w has first order deriva-
tives in equation (5) continuous in S, and its deriva-
tive wy,, continuous when g(1,§) < n < U(T,§);
w satisfies equation (5) almost everywhere in §Q, to-
gether with the conditions (6)(7).
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The solution of problem (5)-(7) will be con-
structed as the limit of a sequence w™, n — oo, which
consists of solutions of the equations

Ln(wn) n71)2 n

n n
v(w Wy, — W — Nwg

+paw] + Vg (W™ )P + 2w (w12 =0, (8)

supplemented by the conditions

wn(oagan) = wO(gvn)a U}n(’T,O,T]) — U)l(’T, 77)
wn(T7 €7 U(T7 5)) = 07
)
Ly (w™) (Vw"_lw,? —vgw™ ! vy (w2
—Px = g7 = 99¢) ln=g(r.e)= 0. (10)

As w? we take a function which is smooth in , sat-
isfies the conditions (6), and is positive for g(7,¢) <
n < U(t,§). We assume that there exists (7, &, n)
with the following properties: g is smooth in €2;
wo > ¢(0,&,m), w1 > ¢o(1,0,m), o > 0 for
g(1,&) <n < U(t,&); moreover,

o = mo(U(7,€) —n)"*

for some mg > 0 and k > 1, provided that U(7, &) —
n < &g, where Jg is a small positive constant.

Assuming that problem (8)(9) admits a solution
w™(n = 1,2...) with continuous third order deriva-
tives in the closed domain €, let us show that w" are
convergent, as n — 00, to a solution of problem (5)-
(7); after that we are going to show that the w™ do ex-
ist, and we indicate a method for their approximation.
A solution will be constructed for problem (1)-(3) in
the domain €2 for some 7' = Ty and any X, as well
as for some X = X and any 7'. The constant 7y and
Xy are determined by ug, u1, Vg, Pg-

Lemma2 Let V be a smooth function such that
L,(V) > 0inQ, 1,(V) > 0 forn = g(7,§), and
V <w" forT = 0and & = 0. Assume that w" ' > 0
forn = g(1,§). Then V< w'™ everywhere in ().

Let V1 be a smooth function such that L, (V1) <
0in , 1,(V) < 0forn = g(1,€), and Vi > w"
for 7 = 0 and & = 0. Assume that w"~ ' > 0 for
n=g(7,&). Then Vi > w" everywhere in Q.

Proof: Let us prove the first statement of Lemma 2.
The difference z = w™ — V satisfies the inequalities

Ly(z) = Lp(w™) — L,(V) <0,
In(2 ) In(w") =

orn = g(7,&). By assumption V' <
0, we have z > 0 for 7 = 0, and

L,(V) = vw" 1z, <0.

since w"~+ > 0 fo
w” forT =0, =
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z > 0 for & = 0. Consider the function z; = ze™ 7,

clearly, 21 > O for 7 = 0 and { = 0; 21, < 0 for
n = U(7,&). It follow that z; can’t have a negative
minimum at 7 = g(, §), since at the point of negative
minimum 21, > 0. The rest of the proof is similar
as in [3].The second statement of Lemma 2 can be
proved in a similar fashion.

Lemma 3 Suppose that vy, vy, v, g-, g and g¢ all are
bounded, g(7,£) < min U(Z’g),ym < 0,1y < 0.
There is a positive constant Ty such that for all n and

all T < Ty the inequalities

H1(7_7£777) >w" > h1(7_7§777)>

hold in Q, where Hy and hy are continuous functions
inQ, hy >0forg<n<U-rt<T.

Proof: Let us construct function V and V; satisfying
the conditions of Lemma 2. To this end, we define
a twice continuously differentiable function ¢ (7, £, )
such that ¢ = k(aq(n —g)) forg <n < g+ 81,0 <
0 <minU(7,£)/2 — g, k(s) = e for 0 < s < 1,
1 < k(s) <3fors>1,and o = (U(r,&) — n)* for
U-—n<dp0<ay<¢p<4dford <n<U-—do.
Here «g is a small constant. We define the functions
V and V] by
V =mpe T, Vi =M(C —eP)elT,

where m, o, a1, 8, 51, C, M are positive constants.

Let us show that Ty and the constants in the def-
inition of V and V) can be chosen independent of n,
so that the inequality V' < wrl <V form < Ty
implies that V' < w™ < Vj for 7 < Tp. Consider
1n(V),1,(V1). For e " > 1/2, since w1 >V =
mype” T and g, g, g¢, Pz, Vyy are bounded.

If we choose vy > 0 and 31 > 0 large enough,
we can get

(V)= anflvn"—vownfl#—yn (w"*1)2—px—gT—ggg

> me™ " (vmaie” " — vg) — Py + vy (w" )2
—9r — 99¢ > 0,
(V1) = vV —vow™ ™ oy (w™ )2 —pe—gr—gge
< me™ T (~vp1Me’T —vg) — py + vy(w"H)?
—9r —99¢ <0,

due to v1 > v > 19, v, < 0. The constant m, C and
M should be chosen from the conditions

()00(7—7& 77) > mw(’]—ag?n)v

M > max{wp, w1 },

C — ebin > 1,

E-ISSN: 2224-2880 643

Xia Ye, Huashui Zhan

Let us choose 3 > 0 such that L,(V;) < 0in Q.
Taking into account the inequality w™~! > V =
mape” 7, vy, < 0, we find that for large positive 3

Lo(V1) = —v(w™ 12 M 2Pl —
—M(C — M) BelT—

—pa M B1e1MePT 4 Vm](wn—l)Si
-1—21/77]\/[667(—51)651"(11}”*1)2

< —ePTv(mape )2 MBI + M B

+pe MB1eP] < 0.
For L,,(V'), we have
Ln(V) = v(w" 1) 2mapy,e " + amipe 7

—mipre” T —nmipee” T + pymapye” T
+l/m7(w"71)3 + 21/77m¢,767°‘7(w"71)2.
Since
0 <w" ! < M(C—ePmeln,

and vy, pg, v, vy are all bounded. the positive con-
stant o can be chosen independent of n and so large
that

L,(V)>0 in Q for n<U(r,§) —d.

because of the inequality ¢ > min{ag,1}. In the
region nn > U(7,€&) — 6o where ¢ = (U — n)*, we
have

Ln(V) = me™T[u(w" ™) ?k(k — 1)(U — )"~
—k(U = 0)*Ur + a(U = )" = k(U —n)*"'U;
~pok(U — )"t = 20y (") k(U — )"
Fugy ("),

It follows from the Bernoulli relation that
Ur +0U¢ +pr = —(U — n)Ug.
Due to vy, 14, all are bounded, if we choose Ty such
that e =70 < 1/2, then for 7 < Tp,
Ln(V) > me™*T[k(U —n)"Ue + a(U —n)"

—2V77(w”_1)2] + V,m(w"_l)?’ >0,
for large positive «. Thus, the conditions of Lemma 2
hold for V" and V7 in €). The constant o and Ty depend
only on the data of problem (5)-(7). Consequently,
if by V < wl < Vj for 7 < Ty, it follow that
Vi > w"™ > V for any n and 7 < Ty. Now, it remains
toset hi(1,&,n) =V, Hi(1,&,n) = V1.
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Lemma 4 Suppose that vy, v,, v, g-, g and g¢ all are
bounded, v,,, < 0,v, <0, there is a positive constant
Xo such that for all n and & < X the inequalities

H2(7_7£777) >w" > h2(7_7§777)>

hold in Q, where Ho, ho are continuous functions in
Qand ha(1,&,m) > 0forn < U, £ < X).

Proof: Let us construct functions V' and V; that sat-
isfy the conditions of Lemma 2. Let ¢)(7, &, n) be the
function constructed in the proof of Lemma 3, and
let ¢(s) be a twice differentiable function for s > 0
and such that p(s) = 3 —e®for 0 < s < 1/2,

1< o(s) <3, ¢(s)|<3, ] ¢ (s)|< 3 forall
s > 0. Set
V =mape ¢, Vi = Mo(Bin)e’.

Let us assume positive constant m, M, «, aq,
B, B1 and X can be chosen independent of n, and
Vi > w" ! >V for & < Xo, pa, vy, gr, g, and g are
bounded, we have

1

ln(V) =rvw"” male_ag—vow”_l_px_|_yn(wn—1)2

—9r — 99¢

_ _ag
> me S (vmare™" —vy) — px > 0,

for large enough o, provided that ¢ > 1/2. If
is sufficiently large and e~*¢ > 1/2, then

In(V1) < me™ " (v M B1e™ —vg) — pg+ vy (w" 1)

—gr —99¢ < 0.
We have

L,(Vy) = V(u)"il)2]\4ﬁ%30”66g — 77]\4@&36g

+[p + 21/77(11)’“1)2]]\/[B1g0l655 + Vnn(wnfl):i.

If Bin < 1/2, ¢" < —1. By assumption, w" " >
mape ¢, where the function v has already been fixed,
and the constant m is determined from the condition:
me < @g, e > 1/2 for ¢ < Xy and suffi-
ciently small Xj. Therefore, ; is taken so large that
L, (V1) < 0for g1n < 1/2. Choosing 3 > 0 so large
that L, (V1) < 0 for 51 > 1/2, choosing a suitable
M, we can ensure the inequality V; > w” for 7 = 0
and for ¢ = 0. By Lemma 2, V; > w" in  for
§ < Xo.
For L, (V') we have

Lo(V) = v(w" 1) 2mabyne ™ + amape ¢

_ml/JTeia& - nmdjﬁeiag + pxmwneiag
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+Vm7(w”_1)3 + 2Vnm¢ne_a§(w”_1)2.

since mape ¢ < w" L if arn < 1,e7% > 1/2 and
a1 large enough then

Lo (V) > vmPaledane3as

+[pet2vy (w1 are® e mAvy, (w12 > 0,

due to the boundedness of vy, .
If1/a; <n<U—38p,% > ap>00<w ! <
M(B1n)eP€ and o is taken large enough, then

L,(V)>0.

If U(1,£) — n < 6&p from the Bernoulli law, as
in the proof of Lemma 3, we take « sufficiently large
to assure L, (V) > 0 for U —n < ¢&p. Therefore,
L,(V) > 0inQfor 0 < & < X, if Xg is chosen
such that e~ %0 < 1 /2. Since, owing to our choice of
m, we have V < w"™ for 7 = 0 and £ = 0, it follows
from Lemma 2 that w™ > maye~ for ¢ < Xy and
all 7. This completes the proof of Lemma 4, since it
may be assumed that V' < w? < V7.

In what follows, it is assumed that the constants
To and X in the definition of €2 are the same as in
Lemma 3 and Lemma 4. In order to estimate the first
and the second order derivatives of w", we pass to new
unknown functions W" = w™e®" in (8)(9), where a
is a positive constant to be chosen later. Thus, we have

L,(w") = V(w"_l)QVV,?77 - Wl —nW¢

+Hpa + 20y (")

+Hea2v(w™™h? — pra — 2upae® (w2 W

— 21/(11)"_1)204]1/1/77,Z

v (W )3e1=9) — g,
bn(w™) = vW" W) — WP W
_Wn_lvo + Vn(Wn_1)2 —Px — 9r — 99¢ = 0.
Set

LY(W) = v(w" )W, — Wy — nWe + AW,

A" = py + 2uy (w12 = 20 (w" ) a,
LY (W™) + B"W" + vy (w"1)?e* = 0,

B" — aQV(wn—l) n—1)2_

— pea — 2vpa(w

Consider the function
O, = (W2 + (WE)? + W (W) — 2H"

gr +99¢  2v,WH

+2 VWn—l

)+ ko + kin,
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where
Vo Dz gr + 99¢
A" = v + vWwn-1 oW x(n) + vWwn-1
VT]W"_l
v

We assume that H™ is defined in €2, and v, p, have
been extended to the region n > ¢(7, &), so that vy =
0,py = 0 forn > d2 = minU(7,&)/2; vo, p, do not
depend on 7 for < d3/2 and are sufficiently smooth
for all n; x(n) is smooth function such that x(n) = 1
for n < d2/2, and x(n) = 0 for n > J2. Obviously,
Wy = H" forn = g(,§).

Lemma S Suppose that vy, vy, v, g-, g and g¢ all are
bounded, vy, < 0,v, < 0, and as before 0 < vy >
v < v, then the constant kg, k1, o can be chosen such
that

P,
8817 Zaq)n_%q)n—l fOT 77:9(7',5)7
L2(®,) + R"®, >0 in Q, (an

where R" depends on w™~" and its derivatives up to
the second order.

Proof: For % atn = g(7,§),

0d,,
on

= QWIWE + 2W WL + Wi (W — 2H")

9r + 99¢
vWn—1
gr +99¢  vyW"!
vWn—1 v
Using the boundary condition Wy' = H" at n =
g(7,€), we obtain

+Wi (W, — 2Hy) + 2W0(

Lt

09,
on

= 2WIH? + 2W HY — 2H"H

9r +99¢ VnW”‘l)
yWn—1 v

gr +99¢  vyW"!
pWn—1 v

According to Lemma 3 and Lemma 4, Wy >

+2Wy(

+2H™( )n + K1

ho > 0 forn = g(7,&). Forn = g(,&), we have

Yoy (pm +9gr + ggg)(ynwn—l + VWT;L_l)

H) =
n 2 (yWn—1)2

n v n— v n—
+FaWix(m) = (S, W = Wy g
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Let us express W' and Wg‘fl from the condition
Wy = H". We find that H"H,' depends only on
v, Uy, Uy, W, WL Wn=2 and therefore, is uni-
formly bounded with respect to n. Consequently,
| 2H"Hp |< kg, ko being independent of n. Let us
estimate WI'H and W/ H'.

For n = g(7, &), we have x(n) = 1,

Vor Pzt pan_l
= W o T V(I/VnT_l)2 oy
Lo +999)r _ (gr + 99¢) Wy
I/W”fl V(Wn71)2 )
Vor Dzt prn_l
Wz =Wl et — )2
(gr +99¢)r  (gr +g9e) WP
+aWr + YW1y (Wn—1)2 )
> (W) — l[vﬁ L Per (97 + ggg)r]g
st T

a v yWwn-1 yWn-1

1 PeH9r t 9912 1in—1y2 _ Q rng2
LRt e gy - Swy,

Due to p;, g-, g and g¢ all are bounded,vy < v <
v1, we can choose a positive « independent of n and
such that

l[px +9r + 99¢

a V(Wn—l)Z ]2 =

o
4 )
Then

3

WIHS > S (W) = (W) — ks,

1 vor Pzt (g‘r + ggf)f 2
k?3 > max E[T + W1 + yWn—1 ] y
and k3 does not depend on n. In a similar way, we

find that

3

nrn n\2 aQ n—1\2

(9- + ggs)g]z
Vanl

+ gg¢ + vy(W"—1)2
VWn—l

=2{W] + W — [px — 2V(w"_l)2a]W7’7"”

—+

1 voe Dat
by > max — 0%
4_maxa[ v +VW”*1

9r
2wy,

9r + gg¢ + vy(W"1)2
VWn—l
1, gr + gge + vp(Wn1)?

Qnn2 2
> _ =
= 4(WT) (X( VWn—l )

_[ QV(wnfl)Q _pwa]Wn}
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L 2nlgr + 99 + vy (W"1)?) 2
« yWn—1
+ gg¢ + vy(Wn™1)2
yWn—1

« n
Sy

—2[ps — QV(w"_l)Qa]W#gT
_ Q2
1 wm)
(®v(w"1)? — pra)(gr + gge + vn(W"‘1)2)]2
yWwn-1
(W{?

1
-
a n\2 o a n\2
> ——(Wh)? - = — —(W™)? — ks.

For n = g(r, &), we have

‘957" > a[(WP)? + (WE)?]

« e
—5[(Wf)2 + (WE?) = ke + ki,

where kg = ko + 2k3 + 2k4 + ks.

The function W,?(I/VéZ — 2H™) |77:g(7.7€) is uni-
formly bounded with respect to n, according to the
boundary condition Wy = H". Therefore

09,
on

> ad, — %cbn_l — kr 4k,

where k7 is a constant that does not depend on n. Let
us choose k1 > k7. We have

0P 1
877” > ad, — 5(1(1)”,1

for n=g(r,§).

Next we consider LY (®,,). Choosing a suitable
ko, we may assume that @, > 1 in 2. Noting that

R
T oywnl v

for n > &2, we have

H?’L

O, = &) = (WP)? + (W2)* + (W) + ko + k.

Applying the operator
0 0 0
QWD — 4 2W— 4+ 2W) —
mor T ege TG,

to the equation
Ly(W") + B"W" =0,

we can get the conclusion of (11). As the details of
the proof, and we will give them in the appendix of
the paper.

In order to estimate the second derivatives of w™
in Q, consider the function

Fo= (W2 + (W) + (W) + W, (We, — 2H)
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n n n n \2
+WT77(WT’I7 - 2H7') + f(n)(Wrm) + NO + N1777

where Ny, N7 are constants, and f(n) is a smooth
function such that f(g) = 0, f (g) = 0, f(n) > 0
forn > g(7,€), f(n) = 1forn > d,.

Lemma 6 The constant Ny and Ny can be chosen

independent of w™,w™ ™, w"? or their derivatives,
so that

oF, «

annZaFn_an—l for n=g,

Lo(F,) +C"Fp+ Ny >0 in Q,

where the constant Ny depends only on the first
derivatives of w™,w™ ", w"2;the constant C™ de-
pends on w1 and its derivatives up to the second
order.

The proof is similar with the way of lemma 5.

3 The solution of the system (5)-(7)

Theorem 7 Let w™ be solutions of problems(8)(9)
(10). Then the derivatives of w™ up to the second or-
der are uniformly bounded with respect to n in domain
Q with a positive T depending on the data of problem

(1)-(3).

Proof: Let us show that there exist constants M7, M>
and T" > 0 such that the conditions ®,, < My, F,
My forT <T,u <n-—1,imply that ®,, < M, F,
Ms for 7 < T'. According to Lemma 5, we have

<
<

L2(®,) + R"®, > 0,

where R™ depends on w"~! and its derivatives up to
the second order.

Consider the function ®. = ®,,¢=77 with a posi-
tive constant -y to be chosen later. We have

LBy + (R" =)@t >0 in Q.

Let us choose +y in accordance with M; and Mo,
so as to have R” — v < —1in 2, as well as for £ =
X, 7 =T,orn = U(r,£). If ®! attains its largest
value at 7 = 0 or at £ = 0, we should have

D) = Ppe " < @, < kg,

where the constant k1; does not depend on n and is
determined only by the data of problem (8)(9)(10). If
®! attains its largest value at some point with =
g, we must have 8<I>711 /On < 0 at that point, and it
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follows from lemma 5 that ®} < %@}hl, ie, @ <

%M 1. Thus we have

1
(I),}l S max{iMl, k‘ll},

1
@ngmax{iMl,k‘H}eW in Q.

Let us take 7y < T such that e?T* = 2, and set
My = 2kq1. In this case, ¢,, < M; for 7 < T7.
We consider F,. By Lemma 6, we have

Lo(F,) + C"F,+ No >0 in Q,

where C" depends on the first and the second deriva-
tives of w™~!, while N depends on the first deriva-
tives of w”, w" 1 w2, Set F! = F,,e™". Then

LO(FNY+(C"—y1)F! > —Noe ™™ > Ny in Q.

Let us choose y; > 0 in accordance with M; and Mo,
so as to have

Cn—’}/lf—l mn leﬁﬁ{rng}.

Then, if Fﬁ attains its largest value inside {2, or at
T=T,orat = X,oratn = U(7,§), we must have
Fy < No(My).
If Fﬁ attains its largest value at 7 = Q or at £ = 0,
then
F) = F,e "7 < F, < Ny,

where the constant N1o depends on M;. If F,% at-
tains its largest value at n = g(7, &), then, according
to Lemma 6, at the point of maximum we have

OF}
02 52> aF! - %F,}_l.
and therefore
1 1 _ 1
Fﬁ S iFr]ii]_ S iFn_le nr S iMQ

It follows that

1
F&gmax{ng,ng,Ng} n Q,

1
Fn S max{iMQ, N12, Nz}e’YlT.

Let us take 75 < T such that €172 = 2. Set
M2 = max{2N12,2N2}. Then Fn < M2 for 7 < T2
and 7 < T7. The constant 75, like 77, depends only
on M; and M> chosen above and determined only by
the data of problem (1)(2)(3). It may be assumed
that w® has been chosen such that ®; < M; and

Fy < Msy. The above results show that ®,, and F),
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are uniformly bounded with respect with respect to n
for 7 < min{7},7T>} = T. The fact that ®,, and
F,, are bounded with respect to n allows us to con-
clude that the first and the second derivatives of w"
are also bounded, since the boundedness of w% for
n < dy follows from (8) and the boundedness of the
first derivatives of w". Theorem 7 is proved.

By the last theorem, we obtain a solution of prob-
lem (8)(9)(10) for any X and a sufficiently small 7.
The fact that derivatives of w™ are bounded for an ar-
bitrary 7" and a sufficiently small X is established by
the following:

Theorem 8 Let v satisfy the conditions quoted be-
fore, and w"™ be solutions of problems(8)(9) (10).
Then w™ are uniformly bounded with respect to n in
domain Q) with X depending on the data of problem

(1)-(3).

Proof: Let us show that there exist constants M7, Mo,
and X > 0 such that the conditions ¢, < M; and
F, < M for{ < X and p < n — 1 imply that
®, < M; and F,, < Ms for ¢é < X. By Lemma 5,
we have Lg(@n) + R"®,, > 0, where R™ depends on
w™ ! and its derivatives up to the second order.

Let &, = ®Lefpi(B1n), where o1(s) is a
smooth function such that ¢1(s) = 2 — e°/2 for
s <1In(3/2),1 < ¢ < 3/2forall s; 3,5 are posi-
tive constants that will be chosen later. We have

LO(®h) + 2v<w”‘1)261%®%n+

+HR =B + A3 E 4y 1)2E Pl > 0.
¥1 Y1
(12)
If 811 < In(3/2), then —3/4 < @] < —1/2,
¢] < —1/2. By Lemma 4, we have (w" 1) > ~g >
0 forn < d9 and € < Xj.
Let n < (7 In(3/2) and n < &,. Due to v is
bounded, then we can find 31 such that the coefficient
of @}L in (12), for ¢ < X, satisfies the inequality

R" —np + A”ﬁlﬁ + (w12 %ﬁ < —1.
1 ¥1
In the region of 7 > min{dy, f; 'In(3/2)} this in-
equality is valid if 5 > 0 has been chosen sufficiently
large. Obviously, 5 may be assumed independent of
My, Mj. Then, according to (12), the function ®.
can’t attain its largest value inside €2 for £ < X at any
of the points 7 =T, £ = X, orn = U(T,£).
If ®} attains its largest value at 7 = 0 or & = 0,

then <I>
D) = e H <D, <k,
Y1
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where k12 does not depend on n, since ®,, |,—¢ and
d,, ]520 can be expressed through wg, w; and their
derivatives.

If @} attains its largest value at = g(7, ), then
O®L /On < 0 at the point of maximum, and it follows
from Lemma 5 that
ol < -1

ol <@l | or

N |

by virtue of our assumption. Thus

1
(I)Tll § max{iMl,klg} in fO’I“ 5 S X,

1
d, < max{iMl, kia} max[eﬂggpl(ﬁm)].

Since ¢1(81m) < 3/2, we have e p1(B1n) <
2, if e#¢ < 4/3. Let us choose X; < X, from the
condition e#X1 < 4/3. Then

P, < max{Ml,leg} for &< Xi.

Set My = 2k1o. Then ®,, < M for £ < X7, where
X1 depends on M; and Mo.
Now, let us consider F},. By Lemma 6

Lo(F,) + C"F, > —Ny in Q for &< Xi.

Let Fy, = Elp1(B2n)eP€ and () be the function
defined above. We have

/
LO(F}) + 2u<w"-1>252%% +[C™ — s

! /" —Ps€
+A B P 4 (B EL S Ny
¥1 $1 $1
(13)
If By < In(3/2), then —3/4 < @} < —1/2, ¢} <
—1/2,1 <1 <3/2.
It follows from Lemma 4 that (w"1)2 > ~o >
0 for n < dy. Let n < min{dy, By 'In(3/2)}. For
these values of 7, the constant S5 can be chosen so
as to make the coefficient by Fi! in (13) satisfy the
inequality

/!
(w1227 < 1.

/
C" =y + A"y L+ v
Y1 Y1

This inequality will hold in the region of n >
min{dy, B ' In(3/2)} if B3 has been chosen suffi-
ciently large. Clearly, 83 depends on M; and Mbo.
Just as in the proof of Theorem 7, we find that

1
Fggmax{ng,Nz,ng} in Q for ¢£<X,

where Nij3 = max{F,} for 7 = 0 and
for &€ = 0; Nj3 depends on M;. We have
E-ISSN: 2224-2880
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F, < max{%Mg, Ny, N13} max[e3€ oy (2n)]
max{ Mo, 2Ns,2N13}, provided that e3¢ (2n)
2 and e3¢ < 4/3.

Let us take My = max{2Ny,2N;3} and define
Xo < Xg from the inequality efsXa < 4/3. Then
F, < M, for ¢ < X, where X = min{X;, X2}.
The fact that ®,, and F;, are bounded implies that the
derivatives of w™ up to the second order are bounded
uniformly in n, since w}}n, for n < d9, can be esti-
mated from equation (8).

IAIN

Theorem 9 The function w™ (n — oo)are uniformly
convergent in § to a solution w™ of problem (5)(6)(7)
in Q, where T is defined in Theorem 7 and X may
be taken arbitrarily, or X is that of Theorem 8 and
T is arbitrary. The function w is continuously differ-
entiable in Q and its derivative Wy IS continuous for

n < U(r,§).

Proof: Let v" = w" —w"~!. We obtain the following
equation from (8)

v(w" H2r — o™ — nv?il + [pz + 2yn(w”_1)2]v"

m n
+V[(wn—1)2 o (wn—2)2] 7T7L77—1
20 (") = (w2

n—l)? _ (wn—2)3] — O,

and also the boundary condition:

+ V[ (w

n n n
V" == 0, V" [e=0= 0, V" v (re)= 0,
uw”flvg — v+ ng‘*lvnfl

+1/,7(w”_1 + w"_g)v"_1 =0 for n=g.

Consider the function v} defined by v" = e‘”+5’7v?,
8 < 0. We have

V(w”_l)Qvﬁm — vl — i + [px + 2%7(’11)”_1)2]1]?”
+vwp (w4 w2 )y

+2uwp (W W) gy (w1
+wn—1wn—2 + (wn—2)2]v?71

—|—2y(w"_1)2[3v’f,7 + (w262 + p.f

+21/77(w"_1)2ﬂ —ajul =0, (14)
The boundary condition n = g(7,§)
uw”_lv?n + Brw™ 1l — gt + Vw:;_lv{“le
(Wt + w2t = 0. (15)
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Due to v, v, and v, are bounded, the constant 5 < 0
should be choose such that in the boundary condition
for v} at n = g(r,€) the coefficients by v} and v}~
satisfy the inequality

max | Vw,r;*l — g + vp(w" "t 4+ w2 |

< gmin | vw" 18 |,
for ¢ < 1.
Having fixed 3, let us choose o > 0 such that

max | ngn_l(w”_l +w"™?)

20w (W™ W) 4 gy (™)
_’_wnflwn72 + (wn72)2] ’
< gla—max | v(w" 1) 2B +p, B+2v, (w128 |).

Now, if | v} | attains its largest value at an interior
point of  or on its boundary, it follow equations (14),
(15) that

max | o} |< qmax | o} |,

where means that the series v + v + -+ VP + - -,
whose partial sums have the form w”e~*"~#", is ma-
jorized by a geometrical progression, and therefore,
is uniformly convergent. The fact w™ and its deriva-
tives up to the second order are bounded implies that
the first derivatives of w' are uniformly convergent as
n — oo.

It follows from equation (8) that wy,,, are also uni-
formly convergent as n — oo for n < U(T,§) — 63,
where J3 < minU(7,£) — max g(,£) and which is
an arbitrary positive constant.

4 The existence of the solution of the
system (8)-(9) and the main result

Now, let us establish the existence of the solution
w™(1,&,n) for problem (8)(9). the way is the simi-
lar as [3].

Consider the operator

Lf (w) = e(wrr+wee+wyy) +01WrrFa2wee +azwyy,
(W) ewnn—wr —nwet+[pe+ 20 (w" 1wy

—|—[u7777(w’“”’1)3]E —2(ay + e)w.

Consider the following elliptic boundary value prob-

lem:
Lf(w) = (f)e in Q, (16)
ow
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where 7 is unit inward normal to S. The function f in
(14) is defined in Q) by

[ = L(w") + a1wy, + agwge + azw,, — 2a1w",

in Q\Qy, f = 01in Q, f coincides with an arbitrary
smooth extension of this function on the rest of Q. The
function F'is given by

v Pa |, grtgge wW
F= DR A o So,
ow*
= on
on v

where 7 is the intersection of S with the boundary of
Q@ Qq; on the rest of S, the function F' in (19) coin-
cides with any smooth extension of I just defined on
So and . Clearly, owing to the properties of w*, we
may assume that f has bounded derivatives up to the
fourth order in () and is infinitely differentiable out-
side a §-neighborhood of 2; F' has bounded deriva-
tives up to the fourth order in a neighborhood of Sy
and is infinitely differentiable on the rest of S.

The boundary value problem (16)-(17) has a
uniqueness solution w? in (), one can see the fact in
[3].

Let us show that the functions w( and their
derivatives up to the fourth order are bounded uni-
formly with respect to €.

Lemma 10 The solutions w? of problem (16)(17) in
Q are bounded uniformly in e.

Proof: Set w" = v.1)!, where ¥!(7) = 1 for 7 <
~1L, Y1) = 1+b(1+7)3for =1 < 7 < T+
2, choose suitable b > 0 such that 1»1_ < 9! in Q

Let 6b(T + 3) < 1. Then v3 satisfies the following
equation in Q:

(f)e
¢1

= e(Ave) + a1Verr + A2Vzge + a3V

+[V(w"*1)2]5v57m — Ve — NWee
n—1\2 ¢71'
+[pz + 21/,7(10 ) ]sUsn + 2(a1 + E)EUU

1
+l(ar +) 55 -
1 v (wn—1)3
_21_2(“1+5)]U5+W> (18)
as well as the boundary conditions on .S
v (F)e
o ol for —2<7<T+1, (19)
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ov- 1 oyt (F).
S = E > .
o +"¢1 o Ve ol for T>T+1. (20)
Since
1
%:wiﬁSO for 7>T+1 on S,
on on

the coefficient of v, in the boundary condition (20) is
non-positive. (The domain () may be assumed convex
for 7 > T + 1.) The coefficient of v. in equation (18)
is negative. Indeed, we have

1
leT <0.
since ¢ /! < 1, and ¢ > 0 for 7 > —1, while
a; > 0forT < —1/2.

Applying to the solution of problem (18)(19)(20)
the a priori estimate established by Theorem 4 of [4],
we find that v, are bounded in () by a constant in-
dependent of ¢ but depending only on the maximum
moduli of the coefficients in equation (18), as well as
on

—(a1 +¢) + (a1 +¢)

max (i?la s max (iza y
1 1
min[(a; + ¢) 127—17 — ZI —2(a1 +¢)].

Lemma 11 The solution w? of problem (16)(17) have
their derivatives up to the fourth order in Q bounded
by a constant independent of ¢.

Proof: First of all, we note that equation (16) is uni-
formly (with respect to ¢) elliptic in @) for 7 > T +
d + r1, and for 7 < —1/2 — ry, where rq is any posi-
tive constant. Therefore, according to the well-known
estimates of Schauder type (see [3]), the m-th order
derivatives of w have their absolute values bounded
by a constant independent of €, for 7 > T+ + 7 and
for 7 < —1/2 — 1, provided that w"~! have bounded
(m —1)-th order derivatives (with m > 2) in the same
region.

Let P(&,7n) be a point of o5 such that | £ |> 24,
and let Ay be the intersection of its §—neighborhood
on the plane &, 7 with the domain . Consider the
cylinder

1
[—5 —r, T+ 6+ m] x As.

Bs =
Let us show that in this domain the functions w have
their derivatives up to the fourth order bounded by a
constant independent of . We may assume that in B
the coefficient a; depends merely on 7, whereas as
and a3 depend only on £ and 7).
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In the domain Ag, let us introduce new coordi-
nates &’ and 7/, so that the part of the boundary o be-
longing to As would turn into a subset of the straight
line = 0, and the direction of the normal n to o
would coincide with that of the 7'-axis. In the new
coordinates, again denoted by &, 7, the boundary con-
dition (17) takes the form Jw[ /0n = F.

Let Y(7,&,n) be a function defined on Bs which
satisfies the condition

oY

an ‘77:0: FE*
The function z = w] — Y satisfies the equation
M(z) = (e + a1)2rr — 2r + a112¢¢ + 2a122¢,

+agozyy + brze + bazy — 2(e +ar)z = fZI, (21)

in Bs and also the condition z, = 0 on S, where
2, 9 25 3\ (o2 2
aroq + 2apaian + axay > Ao(ay + a3),

the constant Ay being positive and independent of ¢.
In order to estimate the first order derivatives of z
with respect to £ and 7, consider the function

A= p§(£7 77)[“252 + zg] + 6122 +c2m, C2>0

Here the constant c; is assumed sufficiently large
and will be chosen later; ps(§,1) = 1in Aj/9, and
ps(&,m) = 0 in a small neighborhood of the boundary
of As that does not belong to ; ps,, = 0 on 0.

It is easy to see that A1 /9n = co > 0 on S and,
therefore, A; cannot attain its largest value on .S. If
the maximum of A; is reached on the boundary of Bj
at a point where ps = 0, then

A1 < max(c12? + ean) < e,

where c3 is a constant independent of . It is easy
to verify that for large enough ¢; we have M (A1) —
A1 > —cy in By, provided that ¢4 is sufficiently large.
Therefore, if A; takes its largest value inside Bg, then
A1 < C4.

As shown above, for7 = T +§ + 71 and 7 =
—1/2—ry, the function A; is uniformly bounded in e.
Thus, A1 in Bs is bounded by a constant independent
of € and, therefore, z¢, z;, are bounded in By, ,01 < 0.

Let us rewrite equation (21) in the firm

M(z) =T(2)+M'(2) = f5, T(2) = (e4+a1)zrr—2,.

The coefficients of the operator M ' may be assumed
independent of 7. Hence, it is easy to see that I' sat-
isfies the following equation and the boundary condi-
tion:

M) =T(T) + MYT) =T(f*) in Bs,
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Iy lp=0=0 on S. (22)

In Bs, consider the function
Ay = p3, [zé + Zgn +T2(2)] + 05(23 + 2727) + ce1.

Making use of equations (21) and (22), we easily find
that

M(AQ)—AQZC’Z m Bgl,
OA
—2206>0 on S.
on

provided that c; > 0 is sufficiently large. Hence
we see that Ay is uniformly bounded in By,, and
I'(2), z¢¢,2¢n are uniformly bounded in Bs,, d2 < 4.
It follows from (21) that z,, is also bounded uni-
formly in . If we consider an equation of the form
(a1 +¢€)zrr — z; = I for z; and use the fact that I is
bounded in Bs, and z, is bounded for 7 = —1/2 —r;
and 7 = T + 6 + r1, we easily find that z; is bounded
in B, uniformly with respect to €.

Since I'(z) is bounded in By, and satisfies equa-
tion (22), as well as the boundary condition I';, |,,—o=
0 on S, we can consider functions similar to A; and
Aj for I in By, (as we have done for z) and thus obtain
uniform estimates in Bs,, 03 < d2, for the derivatives

Le, LTy, Tee, Ty, Iy, s

Differentiating equation (22) in 7, we obtain the

following equation for I';:

—a})Trr + M1 (D7) = (D(f))r,

as well as the boundary condition I';, |,—o= 0 on
S. By assumption, a}(7) is small in Bs. Therefore,
the equation for I'; is similar to (22). Thus, for the
derivatives of I" of the form

(a1 +e)lr — (1

FT{) PT777 FTffv PTnga

((11 + E)P’TT’T - (1 - all)PTTu Frnna Lrr.

in Bs,, 04 < J3, we obtain estimates uniform in ¢, just
as we have done for z.

Similar arguments applied to ', allow us to
show that the derivatives

FTT££7 Fng,

(al + E)FTTTT - (1 - a’,l)FTTTv I_‘TT’I7177 Lrrr.

are bounded in Bs,, 05 < d4, uniformly with respect
to €.

FTT{a FTT777

These estimates show that in B, the third and the
fourth order derivatives of 2z involving more than one
differentiation in 7 are bounded uniformly in €, while
the first order derivatives of I'(I") in £ and 7 satisfy the
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Lipschitz condition in &,  with constants independent
of e, T.

From the Schauder estimates for an elliptic equa-

tion of the form
M () = =I(I) + T(f2)-

it follows that the derivatives of I' in £ and 1 up to the
third order are bounded and satisfy the Holder condi-
tion in By, d¢ < 65, uniformly with respect to € and
7. Schauder estimates for the solution z of equation
(21) written in the form

M'(z) = —T(z) + £,
allow us to claim that z has its derivatives in £ and 7 up
to the forth order bounded in Bjs., §7 < &g, uniformly
with respect to € and 7.

Thus, we have obtained estimate for the deriva-
tives of w! in 7, &, n up to the fourth order in a neigh-
borhood of the entire boundary S, except for a neigh-
borhood of Sy and a neighborhood w of the inter-
section S N {& = 0} which is a subset of the plane
{n=m}.

In equation (16) and the boundary condition (17),
let us pass to another unknown function W given by
m-—-n

2(n) = —an——-,
©2(n) m

w = W2,

o = const > 0.

For W we obtain the following equations

(?;[7/—(11/1/:(}7)(E for n=0,
ow
—Tn—aW—(F)E for n=nmn.

In order to estimate the first order derivatives of
wf in (), consider the following function in Q,, N
{—% -7 <T<T+5+T1}Z

Xy = W2 + W2+ Wy(W, —2Y) + k(n),

where Y = (oW + (F'):)rk1(n), we define function
k1(n) such that k1(n) = 1 for | n |< 0; kKi1(n) =
—1lfor| n—mn |< & ki(n) = 0for 20 < n <
m — 20, k(n) is a positive function to chosen later.
Clearly, 0OW/On—Y = 0 on the parts of the boundary
S belonging to the planes n = 0 or n = n;. We have

X
(‘Tnl lym0= 2WeWe, + 2W, W,, — 2W, Y, + K (0)

= 20[WE + W2 = 2YY, +2We (F)eg +2Wr (F)ert
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+k'(0) > 0,

provided that £'(0) is positive and sufficiently large.
Likewise, taking k(n) in X7 such that £’(n;) is neg-
ative and sufficiently large in absolute value, we find

that 5x
it <0.

877 n=m
By the methods already used in the proof of Lemma 5
we obtain

LY%(X1) + cs X1 > —co, (23)

where

ow

L(W) = L (W) +2[(e 4 a3) + y<wn—1)§}%67

H "2 + e + a3)[w2gm + (p27)”]
+(pa: + 21/,7('11)%71)2)6()027]}”/7

the constant cg and cg9 do not depend on €. In Q,,,

consider the function
X =Xe P B =const>0.

For sufficiently large (3, the coefficient of X7 in (23)

is less than -1. It follows from (23) that if X7 takes

its largest value inside (),,, then X7 is bounded by a

constant independent of €.

Neither for = 0 nor for n = n; can X7 attain
its largest value. It follows from the above estimates
that on the remaining part of the boundary of (), the
function X7 is bounded uniformly in €. Likewise, we
can estimate the second and the third order derivatives
of w? by considering the functions

Xo = W2 + Wit + W2 + Wiye(Wye — 2Ye)

+WnT(WnT —2Y7) + gf(n)Wgn + k(n),

X3 = (X3) + G W, + Wi + W3]
+W7Z§§(W”7§§ - 21/65) + WT]TT(W'[]TT — 2YTT)

+Waer Wher—ave, ) + k(n),

where (X3) stands for the sum of third order deriva-
tives of Win & and 7

g1(n) = {

The required estimates for X5 and X3 can be ob-
tained by the method used above in relation to X7; in
order to establish the inequality of type (23) for X
and X3, we can use the fact that in (16) the coefficient
of W, is positive for n < § and n; — 7 < 6, as we

0 for n<g or 77>771—%,
1 for m—4d>n>6.
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have done in the proof of Lemma 6. While estimat-
ing the fourth order derivatives of W, the following
observations are useful.

Consider the function

Xy = (X0) + G 0)(Xa)" + Wigee (Wieee — 2Yeee)

+W777—TT(W777'TT - 2YTTT> + Wn§§T<Wn§§T - 2}/'557_)
+WnTT§(WnTT§ - 2YTTE) + ]{?(77),

where (X4)" is the sum of squared fourth order deriva-
tives of W except those involving a differentiation
in 7, and (X4)" is the sum of squared fourth order
derivatives of W involving more than one differentia-
tion in 7).

The expression for X4 contains third order deriva-
tives of Y and, therefore, of (F).. The operator
LY (X4) can be estimated through the expressions
L¥(Yrrr), L%(Yee), L%(Yrre), L% (Yree)-
which contain fifth order derivatives of (F').. By con-
struction, F' is infinitely differentiable outside the §-
neighborhood of Sy and has its fourth order deriva-
tives bounded in € on S. In the intersection of the
domain () with the J-neighborhood of Sy, the opera-
tor L% involves second order derivatives in & and 7
with the coefficient £, namely,

32
e’

62

9 W y 9
Since F' has its fourth order derivatives bounded in
g, the fifth order derivatives of its regularization (F').
can be written as O (e~ !). Therefore, the operator L%
applied to the third order derivatives of (F'). results
in a quantity uniformly bounded in €. For the rest,
the proof of the estimate for X, literally follows the
case of X1, Xo, and X3. Thus, we finally see that the
derivatives of w up to the fourth order are bounded
uniformly in €.

Theorem 12 The solutions w? of problem (16)(17) in
QO converge, as € — 0, to the function w™ which is a
solution of problem (8)(9) in ) and has its derivatives
up to the fourth order bounded in ).

Proof: By Lemma 11, the derivatives of w, up to the
fourth order are uniformly bounded in €. Therefore,
there is a subsequence w, such that w,, together
with their derivatives up to the third order, are uni-
formly convergent to w™ in Q) as €, — 0. The limit
function w™ (7, £, ) satisfies equation (8) in €2, as well
as the boundary condition (10). Let us show that the
condition in (9) hold for w™. To this end, we prove
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that w” = w* in Q \ Q1. Set z = w" — w*.
construction, we have

By

a1z + Q22ee + a3zyy + IJ(w*)sz7 — 2y — Nz

+[pe + 2vy (w*)?|wy, — 2a12 = 0,

in @\ Q1, and 0z/9n = 0 on the part of the bound-
ary of @ \ 2 that belongs to S. In @ \ €, consider
the function z* defined by z = z*11 (1), where ¥1 (T)
is the function constructed in the proof of Lemma 10.
For z* we obtain an equation in @ \ §2; with the co-
efficient of z* being strictly negative in the closure of
Q\ Q.

Let E(7, &, n) be a smooth function in () such that
OE/On < 0onS,and E > 1. Set z; = 2z*(E + C),
where C is a positive constant. It is easy to see that in
the equation for z; the coefficient of z; is negative if
C is sufficiently large. The boundary condition on S
for z; will have the form

0z oFE

o arz1 =0, where ap=——>0.
on on

Clearly, | z; | cannot attain its largest value on S, for
at the point of maximum of | z; | on S we must have

21871 —a1(21)? <0,
which is incompatible with the boundary condition on
S. The largest value of | z; | cannot be attained inside
Q@ \ Q, for at the point of its maximum we must have
Z1r = 0, Z1§ = 0,2’177 = O, 2’12’17,77 S 0’21Z1§5 § 0,
and z121- < 0, which is in contradiction with the
equation obtain for z; at that point.

In a similar way, it can be shown that the maxi-
mum of | z; | can be attained neither for 7 = 0 nor
for £ = 0 on the boundary of @ \ £2;. It follows that
z1 =01in @Q \ ©; and, therefore, w" = w* in Q \ Q.
Hence, we see that

wn(oa 5) 77) = Wo,

Let us show that w”™ = 0 on the surface n =
U(r,§). It follows from the above results that w™ = 0
for = 0and n = U(0,§), as well as for £ = 0
and n = U(7,0). Since w" ! = 0 on the surface
n = U(r,§), the equation

w"(1,0,n) = w;.

wy + nwg — prwy

n =0

holds for w™ on that surface. As indicated above, the
vectors (1,7, —p,) belong to planes tangential to the
surface n = U(7,&) and form a vector field on that
surface. Integral curves of that field, being extended
for smaller values of 7, will cross the border of the sur-
face either at ¢ = 0 or at 7 = 0, where w™ = 0. Since
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w™ is constant on these integral curves, w™ = 0 on the
entire surface n = U(7, £). Note that the function w"
constructed above has its third order derivatives in 2
satisfying the Lipschitz condition.

Theorem 13 Assume that p(t,x), vo(t, ), uo(z,y),
ur(t,y), wo(&m), wil(r,m), v(y), g(t,x) are suffi-
ciently smooth and satisfy the compatibility conditions
which amount to the existence of the function w* men-
tioned earlier. Then there is one and only one solu-
tion of problem (1)-(3) in the domain D, with X be-
ing arbitrary and T depending on the data of prob-
lem (1)-(9), or T being arbitrary and X depending on
the data. This solution has the following properties:
u > 0fory >0, uy > 0fory > 0; the derivatives
Uty Ugy Uy, Uyy, Uy are continuous and bounded in D;
moreover, the ratios
2

UyyyUy — Uyy

Y

Uyy

3
Uy uy
are bounded in D.

Proof: Let w be the solution of problem (5)-(7) con-
structed in the proof of Theorem 12. Let u be defined
by the condition w = u,, or

_/“ ds
v= 0 w(t,a:,s)'

Since w(t, x,s) > 0 for s < U(t,x), and w = 0
for s = U(t,x), we have u — U(t, z) as y — oo, and
0<u<U(tz)for0 <y < oo, u(t,z,0) = 0. The
condition u(0, x,y) = up and u(t,0,y) = uq are also
valid, since wg = ug, and wy; = u1y. The function
defined by (24) possesses the derivatives

(24)

— _ _ 2
Uy =W, Uy = Wyl Uyyy = Wyplly + Wyllyy,

_ _ 2
Vy = VyW, Vyy = Uppw” + Vywpw.

The derivatives u; and u,, are given by

Uwy(t, x, s)

ds,

uw=-w | ———=
¢ 0 wQ(t,IIZ,S)

Y wg(t,x, s
ue=—w | Wf‘
) )

Set
Y Ut~ Uy — Po (l/uy)y. (25)
Uy
Let us show that v and v defined by (24) and (25)
satisfy system (1). Differentiating the relation u, =

w, we find that there exist the derivatives

Uyg = We + UgWy, Uyt = Wr + UWy.
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Therefore, v admits the derivatives in y. Differentiat-
ing (25) in y, we obtain
VyUy + VUyy =

—Uty — UyUg—

Ulgy + VyyUy + 25Uy + Vg, (26)

The function w satisfies equation (5). Replacing in
(5) the derivatives of w by their expressions in terms
of derivatives of u, we find that

2
o Uy Uyyy — U u Uz U
yuyT‘yy —uyt—i-utuiyy —u(Uyy — %)—i—
Uu
Fpa 1 vyt + vty = 0. @7)
Yy
It follows from (26) and (27) that
Uy + vy = 0. (28)

Let us show that v(¢, z,0) = wvg(t, z). It follows
from (7) that

— Pz + Vnw2 —dr
w

vwwy

_995)

v = ( ’n:g .

From (25) we find that

—Up — Uly — Pz + (Vuy)y)

Uy

v ’y:0: ( ’yzO

— P+ Vnw2 —9r
w

vwwny

— 49
= ( £)
Thus we have proved the existence of a solution
for problem (1)-(3) in the class of smooth functions.
Its uniqueness is able to been established by a similar
way as Theorem 4.2.2 of [3], we omit the details here.

ln=g= V0.

S Appendix

At the last of the paper, we give the details of the proof
to the inequality (11). As in the section 2, we have

O, = @) = (WP)? + (WE)? + (W) + ko + kan.
Applying the operator
0 0 0
QW — + 2W¢ 2W) —
mor T ege TG,

to the equation

LO(W™) 4+ B"W™ = 0,
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we find that
0= v(w"1)? o — Pnr — 77‘1)25 + A”@;’ng +2B"®r
2w L)+ (W )2 4 (W2}
2w () R) VI W+ 2 (w0 )R W
+2y((w"’1)2)nW,%W,7] + [—2W£”W” + ZA"(VV”)2
+2A?W;‘W§” =+ QAZW,?WT”
+2W(B,Y7LW5L + B?ng + BI'W)]
—B"(kin + ko) — A™ky + 2W ] [vgpe® (w™1)?] -
H2WE e (W) e + 2W [png e (w" )%,
(29)
for the last three terms, we have

2W 7 [y (w" ) e+ 2W¢ gy (w" )¢

+2Wy [vme™ (w "%,

= 2aW vy, e (w" 13

+2W”I/7m€m7[( 13, +2aW?1/nnem7(w”_1)3
+2Wevne™[(w ) e + 2W 3 vy e® (w™™ ?

+20W v e (W) 4 2W i e (w1,
a +b

according to ab <
have

204W7”V77,760”7(w”_l)3 + 2an‘Vme°‘”(w"_1)3
+ (20w + 21/777777)WT7€M7(’LU”71)3
h[(W7)? + (")) + ho[(WE)? + (w" 1))
+hs[(Wy)? + (w" )"

< B[P+ (WE) + (W) + h(w™™)°,
where hi, hs, hs are taken large enough, h = h; +
ho + hs
2W 7 e (w1 + 2W e [(w" )%
+2W#[Vnnean(wnil)3]n
R{(WE)? + (WE)? + (W] + h(w™H)°
+ 2W e [(w" )] 2WE e () e
+2W;Vnn€an[(wn_l)3]n
R{(WE)? 4+ (WE)? + (W) + h(w" )"
+ha[(WF)? + (WE)?2 + (Wy)?]

VUV are bounded, we

IN

IN

IN

a
Unn€

@)+ ()
4
(™))

Denote by I; the terms in the first square brackets
in (29), we obtain the following estimate from above

LS Ri(W]) + (WE)* + (W5
- L@ P + (™))
1
()W),
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where R; is a constant.

It is well known that (see for instance [19]) any
non-negative function ¢(x) defined on interval —oo <
z < +o00o and having bounded second derivatives on
that interval satisfies the inequality

(Qx)z < 2{max ‘ Qxx ‘}Q(x)

The function (w™~1)3 or (w"~1)? can be extended to
the entire real axis with respect to any of its indepen-
dent variable, so that its extension is a non-negative
bounded function whose second derivative has its ab-
solute value less than or equal to the maximum mod-
ulus of the second derivative of (w"™~1)3 or (w™~1)2.
Therefore

a(n—g)
Vpne®

(@) + [(w" 1))
4

H((w" ™))} <[ vy | ("1,

1/2
Rj{[((w”‘l)z)r]2 + [((w"1)?)e]?
H((™ )P < w(w™ )2 (W )2,

where R, hy is chosen sufficiently large. The con-
stant 1?1 depends on the second derivative of the func-
tions (w™~1)2 and hy depends on the second deriva-
tive of the functions (w"~1)3.

Denote by I the terms enclosed by the second
square brackets in (29). By virtue of the inequality
2ab < a? + b, these terms can be estimated from
above by the expression Ro®; + kg, where the con-
stant Ry depends on the first order derivative of the
functions w" ™!, kg is independent of n.

Therefore, in the region 1 > §2, we have
L(®,)+R3®,,+kg >0 or L2(®,)+R"®, >0,

where the constant kg is independent of n, and the
function R™ depends on the first and the second
derivatives of w™ 1.

In order to estimate LY (®,,) in  for n < o, we
should also calculate L, (2W;"H")

0 _ 0 0
L, (2WH™) = 2H" L, (W)') + 2W,' L, (H")
4y (w2 W, Hy

= 2H"{—v(w" ! ),IW,% + W — ApWe

_ann _ ann _ [Unn(w”—l)gea(n_g)]n}

+2W P LO(2 )+ L Wj; =) — ax(n)B"W"
—ax(n)l/m;(w” 1)3€a(n ) +aWnLO(X)
ggg Van_l

+2a1/(w"*1)2W” + LO(

yWwn-l1 v

+Av(WnHPW HY.
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According to Lemma 3 and Lemma 4, (w"~1)2>
Yo > O0forn < 52 There, the terms /7 in (11) together
with 2H"v(w"™ ) Wy, can be estimated with the

help of the inequality 2ab < a?/h + hb? as follows:

1

Il+2HnV( n ) W:]Zn < QVVO(W;Ln)2+R4(I)n+k10,
where the constant R, does not depend on n, It fol-
lows from (11) and L9 (2W;' H") that

Lg(@n) + R5®, +Rs >0 for n<da,

where Rj5 and Rg are constant that depend neither on
w1 nor on its derivatives up to the second order.

Since ®,, > 1, we have R¢®,, > R, Therefore

L2(®,) + R"®, > 0.
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